Genetic Redundancy in Evolving Populations of Simulated Robots

Author:

Miglino Orazio1,Walker Richard2

Affiliation:

1. Dipartimento di Psicologia, Seconda Università di Napoli, Via Vivaldi, 43, 81100 Caserta, Italy

2. Consiglio Nazionale delle Ricerche, Istituto di Psicologia, Viale Marx, 15, 00137, Rome, Italy

Abstract

A number of authors have argued that redundancy in biological organisms contributes to their evolvability. We investigate this hypothesis via the experimental manipulation of genetic redundancy in evolving populations of simulated robots controlled by artificial neural networks. A genetic algorithm is used to simulate the evolution of robots with the ability to perform a previously studied task. Redundancy is measured using systematic lesioning. In our experiments, populations of robots with larger genotypes achieve systematically higher fitness than populations whose genotypes are smaller. It is shown that, in principle, robots with smaller genotypes have enough computational power to achieve optimal fitness. Populations with larger (redundant) genotypes appear, however, to be more evolvable and display significantly higher diversity. It is argued that this enhanced evolvability is a direct effect of genetic redundancy, which allows populations of redundant robots to explore neutral networks spanning large areas of genotype space. We conjecture that, where cost considerations allow, redundancy in functional or potentially functional components of the genome may make a valuable contribution to evolution in artificial and perhaps in biological systems. The methods described in the article provide a practical way of testing this hypothesis for the artificial case.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3