The dissociative role of bursting and non-bursting neural activity in the oscillatory nature of functional brain networks

Author:

Cordier Alix1,Mary Alison2,Vander Ghinst Marc13,Goldman Serge14,De Tiège Xavier15,Wens Vincent15

Affiliation:

1. Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN2T), Brussels, Belgium

2. Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Neuropsychology and Functional Neuroimaging Research Unit (UR2NF) at Centre de Recherches Cognition et Neurosciences (CRCN), Brussels, Belgium

3. Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Ear, Nose and Throat, and of Cervico-facial surgery, Brussels, Belgium

4. Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Nuclear Medicine, Brussels, Belgium

5. Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Translational Neuroimaging, Brussels, Belgium

Abstract

Abstract The oscillatory nature of intrinsic brain networks is largely taken for granted in the systems neuroscience community. However, the hypothesis that brain rhythms—and by extension transient bursting oscillations—underlie functional networks has not been demonstrated per se. Electrophysiological measures of functional connectivity are indeed affected by the power bias, which may lead to artefactual observations of spectrally specific network couplings not genuinely driven by neural oscillations, bursting or not. We investigate this crucial question by introducing a unique combination of a rigorous mathematical analysis of the power bias in frequency-dependent amplitude connectivity with a neurobiologically informed model of cerebral background noise based on hidden Markov modeling of resting-state magnetoencephalography (MEG). We demonstrate that the power bias may be corrected by a suitable renormalization depending nonlinearly on the signal-to-noise ratio, with noise identified as non-bursting oscillations. Applying this correction preserves the spectral content of amplitude connectivity, definitely proving the importance of brain rhythms in intrinsic functional networks. Our demonstration highlights a dichotomy between spontaneous oscillatory bursts underlying network couplings and non-bursting oscillations acting as background noise but whose function remains unsettled.

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3