A Sequential Niche Technique for Multimodal Function Optimization

Author:

Beasley David1,Bull David R.2,Martin Ralph R.1

Affiliation:

1. Department of Computing Mathematics, University of Wales, College of Cardiff, Cardiff CF2 4YN, United Kingdom

2. Department of Electrical and Electronic Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom

Abstract

A technique is described that allows unimodal function optimization methods to be extended to locate all optima of multimodal problems efficiently. We describe an algorithm based on a traditional genetic algorithm (GA). This technique involves iterating the GA but uses knowledge gained during one iteration to avoid re-searching, on subsequent iterations, regions of problem space where solutions have already been found. This gain is achieved by applying a fitness derating function to the raw fitness function, so that fitness values are depressed in the regions of the problem space where solutions have already been found. Consequently, the likelihood of discovering a new solution on each iteration is dramatically increased. The technique may be used with various styles of GAs or with other optimization methods, such as simulated annealing. The effectiveness of the algorithm is demonstrated on a number of multimodal test functions. The technique is at least as fast as fitness sharing methods. It provides an acceleration of between 1 and l0p on a problem with p optima, depending on the value of p and the convergence time complexity.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3