Neural Network Dynamic Metamodels for a Highly Detailed Cable-Stayed Bridge Finite Element Model

Author:

Tiprak Koravith1,Takeya Kouichi1,Sasaki Eiichi1

Affiliation:

1. Tokyo Institute of Technology, Tokyo, Japan

Abstract

<p>Despite Finite Element Analysis (FEA) having a strong theoretical foundation with high accuracy, its significant limitation in computational time is highlighted when a large number of FEAs is required. This study thus desires to address the issue by investigating the capabilities of Neural Networks (NNs) in being surrogate models of highly detailed FE models. The generalized processes of the NN model development and the exemplar architectures of the NN models for predicting the frequencies and mode shapes are first proposed before being applied to the task of high dimensional Finite Element Model Updating (FEMU) of a complex cable-stayed bridge. Then, the aspects of the computational time, accuracy, and challenges of the NNs in future works are discussed. Results from the FEMU that utilizes the multi-restart Genetic Algorithm (GA) emphasize the efficiency of the NNs in leading the GA toward an updated FE model that better replicates the actual dynamic responses.</p>

Publisher

International Association for Bridge and Structural Engineering (IABSE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3