Affiliation:
1. Computer Science Dept. St. Cloud State University 139 Engineering and Computing Center St. Cloud, MN 56301-4498
2. Laboratory for Applied Logic Computer Science Dept. University of Idaho Moscow, Idaho 83844-1010
Abstract
Parsimony pressure, the explicit penalization of larger programs, has been increasingly used as a means of controlling code growth in genetic programming. However, in many cases parsimony pressure degrades the performance of the genetic program. In this paper we show that poor average results with parsimony pressure are a result of “failed” populations that overshadow the results of populations that incorporate parsimony pressure successfully. Additionally, we show that the effect of parsimony pressure can be measured by calculating the relationship between program size and performance within the population. This measure can be used as a partial indicator of success or failure for individual populations.
Subject
Computational Mathematics
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献