Gradient Information and Regularization for Gene Expression Programming to Develop Data-Driven Physics Closure Models

Author:

Waschkowski Fabian,Li Haochen,Deshmukh Abhishek,Grenga Temistocle,Zhao Yaomin,Pitsch Heinz,Klewicki Joseph,Sandberg Richard D.

Abstract

AbstractLearning accurate numerical constants when developing algebraic models is a known challenge for evolutionary algorithms, such as Gene Expression Programming (GEP). This paper introduces the concept of adaptive symbols to the GEP framework by Weatheritt and Sandberg (J Comput Phys 325:22–37, 2016a) to develop advanced physics closure models. Adaptive symbols utilize gradient information to learn locally optimal numerical constants during model training, for which we investigate two types of nonlinear optimization algorithms. The second contribution of this work is implementing two regularization techniques to incentivize the development of implementable and interpretable closure models. We apply $$L_2$$ L 2 regularization to ensure small magnitude numerical constants and devise a novel complexity metric that supports the development of low complexity models via custom symbol complexities and multi-objective optimization. This extended framework is employed to four use cases, namely rediscovering Sutherland’s viscosity law, developing laminar flame speed combustion models and training two types of fluid dynamics turbulence models. The model prediction accuracy and the convergence speed of training are improved significantly across all of the more and less complex use cases, respectively. The two regularization methods are essential for developing implementable closure models and we demonstrate that the developed turbulence models substantially improve simulations over state-of-the-art models.

Funder

Melbourne Research, University of Melbourne

National Natural Science Foundation of China

Australian Research Council

University of Melbourne

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3