In Vitro Characteristics and In Vivo Immunosuppressive Activity of Compact Bone-Derived Murine Mesenchymal Progenitor Cells

Author:

Guo Zikuan1,Li Hong1,Li Xiusen1,Yu Xiaodan1,Wang Hengxiang1,Tang Peihsien1,Mao Ning1

Affiliation:

1. Department of Cell Biology, Beijing Institute of Basic Medical Sciences, Beijing, China

Abstract

Abstract In contrast to the considerable amount of data that documents the biological properties of mesenchymal progenitor cells from human and other species, there is still paucity of information about mouse counterparts, as their purification and culture expansion procedures remain rudimentary. In the present study, murine mesenchymal progenitor cell (muMPC) culture was developed by explant culture of collagenase-digested bone fragments after removal of the released cells. During cultivation, fibroblastoid cells sprouted and migrated from the fragments, followed by adherent monolayer development. The cells exhibited homogenous surface antigen profile and presented in vitro multipotential differentiation along osteocyte, chondrocyte, and adipocyte lineages, as evaluated by matched cell or matrix staining and reverse transcription polymerase chain reaction techniques. Also, the surface antigenic epitope changed and potential of proliferation and multidifferentiation decreased with successive subculturing. Functional investigations demonstrated that these cells supported in vitro hematopoiesis and suppressed lymphocyte cell proliferation triggered by ConA or allogeneic splenocytes. Furthermore, muMPCs prolonged the mean survival time of skin grafts across the major histocompatibility barrier (H2b → H2d), suggestive of the immunosuppressive effects in vivo. The findings demonstrate that muMPCs obtained with this simple protocol are similar in property to their marrow counterparts, and thus, the protocol described here could be used for further investigations in mouse physiological and pathological models.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3