Disruption of hematopoiesis attenuates the osteogenic differentiation capacity of bone marrow stromal cells

Author:

Wang Changzhen,Ning Hongmei,Gao Jiao,Xue Teng,Zhao Ming,Jiang Xiaoxia,Zhu Xiaoming,Guo Ximin,Li Hong,Wang Xiaoyan

Abstract

Abstract Background The homeostasis of mesenchymal stem cells (MSCs) is modulated by both their own intracellular molecules and extracellular milieu signals. Hematopoiesis in the bone marrow is maintained by niche cells, including MSCs, and it is indispensable for life. The role of MSCs in maintaining hematopoietic homeostasis has been fully elucidated. However, little is known about the mechanism by which hematopoietic cells reciprocally regulate niche cells. The present study aimed to explore the close relationship between MSCs and hematopoietic cells, which may be exploited for the development of new therapeutic strategies for related diseases. Methods In this study, we isolated cells from the offspring of Tie2Cre + and Ptenflox/flox mice. After cell isolation and culture, we investigated the effect of hematopoietic cells on MSCs using various methods, including flow cytometry, adipogenic and osteogenic differentiation analyses, quantitative PCR, western bloting, and microCT analysis. Results Our results showed that when the phosphatase and tensin homolog deleted on chromosome 10 (Pten) gene was half-deleted in hematopoietic cells, hematopoiesis and osteogenesis were normal in young mice; the frequency of erythroid progenitor cells in the bone marrow gradually decreased and osteogenesis in the femoral epiphysis weakened as the mice grew. The heterozygous loss of Pten in hematopoietic cells leads to the attenuation of osteogenic differentiation and enhanced adipogenic differentiation of MSCs in vitro. Co-culture with normal hematopoietic cells rescued the abnormal differentiation of MSCs, and in contrast, MSCs co-cultured with heterozygous null Pten hematopoietic cells showed abnormal differentiation activity. Co-culture with erythroid progenitor cells also revealed them to play an important role in MSC differentiation. Conclusion Our data suggest that hematopoietic cells function as niche cells of MSCs to balance the differentiation activity of MSCs and may ultimately affect bone development.

Funder

national natural science foundation of china

beijing municipal natural sciences foundation

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3