The Myogenic Factor Myf5 Supports Efficient Skeletal Muscle Regeneration by Enabling Transient Myoblast Amplification

Author:

Ustanina Svetlana1,Carvajal Jaime2,Rigby Peter2,Braun Thomas1

Affiliation:

1. Max Planck Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany

2. Section of Gene Function and Regulation, The Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom

Abstract

Abstract The myogenic factor Myf5 defines the onset of myogenesis in mammals during development. Mice lacking both Myf5 and MyoD fail to form myoblasts and are characterized by a complete absence of skeletal muscle at birth. To investigate the function of Myf5 in adult skeletal muscle, we generated Myf5 and mdx compound mutants, which are characterized by constant regeneration. Double mutant mice show an increase of dystrophic changes in the musculature, although these mice were viable and the degree of myopathy was modest. Myf5 mutant muscles show a small decrease in the number of muscle satellite cells, which was within the range of physiological variations. We also observed a significant delay in the regeneration of Myf5 deficient skeletal muscles after injury. Interestingly, Myf5 deficient skeletal muscles were able to even out this flaw during the course of regeneration, generating intact muscles 4 weeks after injury. Although we did not detect a striking reduction of MyoD positive activated myoblasts or of Myf5-LacZ positive cells in regenerating muscles, a clear decrease in the proliferation rate of satellite cell-derived myoblasts was apparent in satellite cell-derived cultures. The reduction of the proliferation rate of Myf5 mutant myoblasts was also reflected by a delayed transition from proliferation to differentiation, resulting in a reduced number of myotube nuclei after 6 and 7 days of culture. We reason that Myf5 supports efficient skeletal muscle regeneration by enabling transient myoblast amplification. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3