Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration

Author:

Goetsch Sean C.1,Hawke Thomas J.1,Gallardo Teresa D.1,Richardson James A.2,Garry Daniel J.13

Affiliation:

1. Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573

2. Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573

3. Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573

Abstract

Muscle regeneration is a complex process requiring the coordinated interaction between the myogenic progenitor cells or satellite cells, growth factors, cytokines, inflammatory components, vascular components and the extracellular matrix (ECM). Previous studies have elegantly described the physiological modulation of the regenerative process in response to muscle injury, but the molecular response that characterizes stages of the repair process remains ill-defined. The recent completion of the Human and Mouse Genome Projects and the advent of technologies such as high-density oligonucleotide array analysis facilitate an expanded analysis of complex processes such as muscle regeneration. In the present study, we define cellular and molecular events that characterize stages of muscle injury and regeneration. Utilization of transcriptional profiling strategies revealed coordinated expression of growth factors [i.e., Tgfb1, Igf1, Egf, chemokine (C-C motif) ligand 6 and 7], the fetal myogenic program (Myod1, Myf5, Myf6), and the biomatrix (procollagen genes, Mmp3, Mmp9, biglycan, periostin) during muscle regeneration. Corroboration of the transcriptional profiling analysis included quantitative real-time RT-PCR and in situ hybridization analyses of selected candidate genes. In situ hybridization studies for periostin [osteoblast-specific factor 2 (fasciclin I-like)] and biglycan revealed that these genes are restricted to mesenchymal derivatives during embryogenesis and are significantly regulated during regeneration of the injured hindlimb skeletal muscle. We conclude that muscle regeneration is a complex process that requires the coordinated modulation of the inflammatory response, myogenic progenitor cells, growth factors, and ECM for complete restoration of muscle architecture.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3