Transformation by Retroviral Vectors of Bone Marrow-Derived Mesenchymal Cells Induces Mitochondria-Dependent cAMP-Sensitive Reactive Oxygen Species Production

Author:

Piccoli Claudia1,Scrima Rosella1,Ripoli Maria1,Di Ianni Mauro2,Del Papa Beatrice3,D'Aprile Annamaria1,Quarato Giovanni1,Martelli Maria Paola3,Servillo Giuseppe3,Ligas Claudio2,Boffoli Domenico1,Tabilio Antonio2,Capitanio Nazzareno1

Affiliation:

1. Department of Biomedical Sciences, University of Foggia, Foggia, Italy

2. Department of Internal Medicine and Public Health, University of L'Aquila, L'Aquila, Italy

3. Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy

Abstract

Abstract Retroviral vectors are used in human gene therapy trials to stably introduce therapeutic genes in the genome of patients' cells. Their applicability, however, is frustrated by the limited viability of transformed cells and/or by risks linked to selection of oncogene-mutated clones. The reasons for these drawbacks are not yet completely understood. In this study, we show that LXSN-NeoR gene/interleukin-7-engineered mesenchymal stromal cells exhibited a marked enhancement of reactive oxygen species production compared with untransfected cells. This effect resulted to be independent on the product of the gene carried by the retroviral vehicle as it was reproducible in cells transfected with the empty vector alone. Stable transfection of mesenchymal stromal cells with the different retroviral vectors pBabe-puro and PINCO-puro and the lentiviral vector pSico PGK-puro caused similar redox imbalance, unveiling a phenomenon of more general impact. The enhanced production of reactive oxygen species over the basal level was attributable to mitochondrial dysfunction and brought back to altered activity of the NADH-CoQ oxidoreductase (complex I) of the respiratory chain. The oxidative stress in transfected mesenchymal stem cells was completely reversed by treatment with a cAMP analog, thus pointing to alteration in the protein kinase A-dependent signaling pathway of the host cell. Transfection of mesenchymal stromal cells with a PINCO-parental vector harboring the green fluorescent protein gene as selection marker in place of the puromycin-resistance gene resulted in no alteration of the redox phenotype. These novel findings provide insights and caveats to the applicability of cell- or gene-based therapies and indicate possible intervention to improve them. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3