A Sex-Dependent, Tropic Role for Leptin in the Somatotrope as a Regulator of POU1F1 and POU1F1-Dependent Hormones

Author:

Odle Angela K.1,Allensworth-James Melody L.1,Akhter Noor1,Syed Mohsin1,Haney Anessa C.1,MacNicol Melanie1,MacNicol Angus M.1,Childs Gwen V.1

Affiliation:

1. Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205

Abstract

Pituitary somatotropes perform the key function of coordinating organismic growth and body composition with metabolic signals. However, the mechanism by which they sense and respond to metabolic signals via the adipokine leptin is unknown. The complex interplay between the heterogeneous cell types of the pituitary confounds the identification of somatotrope-specific mechanisms. Somatotropes represent 30%–40% of the anterior pituitary population and are derived from a lineage of cells that are activated by the Pit-Oct-Unc domain family domain class 1 transcription factor 1 (POU1F1) to produce GH, prolactin (PRL). and TSH. To determine the mechanism by which leptin controls somatotrope function, we used Cre-LoxP technology and fluorescence-activated cell sorting to purify and study control or leptin receptor-deleted (Lepr null) somatotropes. We report that Lepr-null somatotropes show significant reductions in GH protein (GH) and Gh mRNA. By contrast, enzyme immunoassays detected no changes in ACTH, LH, and FSH levels in mutants, indicating that the control of these hormones is independent of leptin signaling to somatotropes. Reduced TSH and PRL levels were also observed, but interestingly, this reduction occurred only in in Lepr-null somatotropes from mutant females and not from males. Consistent with the sex-specific reduction in Gh mRNA, TSH, and PRL, enzyme immunoassays detected a sex-specific reduction in POU1F1 protein levels in adult female Lepr-null somatotropes. Collectively, this study of purified Lepr-null somatotropes has uncovered an unexpected tropic role for leptin in the control of POU1F1 and all POU1F1-dependent hormones. This supports a broader role for somatotropes as metabolic sensors including sex-specific responses to leptin.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3