Disruptions of Global and Jagged1-Mediated Notch Signaling Affect Thyroid Morphogenesis in the Zebrafish

Author:

Porazzi Patrizia1,Marelli Federica1,Benato Francesca2,de Filippis Tiziana3,Calebiro Davide4,Argenton Francesco2,Tiso Natascia2,Persani Luca13

Affiliation:

1. Dipartimento di Scienze Cliniche e di Comunità (P.P., F.M., L.P.), Università degli Studi di Milano, 20122 Milan, Italy

2. Dipartimento di Biologia (F.B., F.A., N.T.), Università degli Studi di Padova, 35131 Padua, Italy

3. Laboratorio di Ricerche Endocrino-Metaboliche (T.d.F., L.P.), Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Auxologico Italiano, 20149 Milan, Italy

4. Rudolf Virchow Center (D.C.), Research Center for Experimental Biomedicine and Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany

Abstract

AbstractThe mechanisms underlying the early steps of thyroid development are largely unknown. In search for novel candidate genes implicated in thyroid function, we performed a gene expression analysis on thyroid cells revealing that TSH regulates the expression of several elements of the Notch pathway, including the ligand Jagged1. Because the Notch pathway is involved in cell-fate determination of several foregut-derived endocrine tissues, we tested its contribution in thyroid development using the zebrafish, a teleost model recapitulating the mammalian molecular events during thyroid development. Perturbing the Notch signaling (e.g. mib mutants, γ-secretase inhibition, or Notch intracellular domain overexpression), we obtained evidence that this pathway has a biological role during the earlier phases of thyroid primordium induction, limiting the number of cells that proceed to a specialized fate and probably involving actions from surrounding tissues. Moreover, we were able to confirm the expression of Jagged1 during different phases of zebrafish thyroid development, as well as in mouse and human thyroid tissues. The two orthologues to the single jagged1 gene (JAG1) in humans, jag1a and jag1b, are expressed with different spatiotemporal patterns in the developing zebrafish thyroid. Both jag1a and jag1b morphants, as well as jag1b mutant fish line, display thyroid hypoplasia and impaired T4 production; this thyroid phenotype was rescued by coinjection of human JAG1 mRNA. In conclusion, Notch pathway is involved in the early steps of thyroid morphogenesis, and Jagged1-Notch signal is required for zebrafish thyroid development and function. Thus, genetic alterations affecting the Notch pathway may confer susceptibility for thyroid dysgenesis.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3