Identification of Adipocyte Genes Regulated by Caloric Intake

Author:

Franck Niclas1,Gummesson Anders2,Jernås Margareta3,Glad Camilla23,Svensson Per-Arne2,Guillot Gilles4,Rudemo Mats5,Nyström Fredrik H.1,Carlsson Lena M. S.2,Olsson Bob3

Affiliation:

1. Department of Medical and Health Sciences (N.F., F.H.N.), Linköping University, 581 85 Linköping, Sweden;

2. Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine (A.G., C.G., P.-A.S., L.M.S.C.), The Sahlgrenska Academy at University of Gothenburg, 413 45 Gothenburg, Sweden;

3. Department of Internal Medicine (M.J., C.G., B.O.), The Sahlgrenska Academy at University of Gothenburg, 413 45 Gothenburg, Sweden;

4. Mathematical Statistics Section (G.G.) Department of Informatics and Mathematical Modelling, Technical University of Denmark, Copenhagen, 2800 Lyngby, Denmark;

5. Department of Mathematical Statistics (M.R.), Chalmers University of Technology and University of Gothenburg, 412 58 Gothenburg, Sweden

Abstract

abstract Context: Changes in energy intake have marked and rapid effects on metabolic functions, and some of these effects may be due to changes in adipocyte gene expression that precede alterations in body weight. Objective: The aim of the study was to identify adipocyte genes regulated by changes in caloric intake independent of alterations in body weight. Research Design and Methods: Obese subjects given a very low-caloric diet followed by gradual reintroduction of ordinary food and healthy subjects subjected to overfeeding were investigated. Adipose tissue biopsies were taken at multiple time-points, and gene expression was measured by DNA microarray. Genes regulated in the obese subjects undergoing caloric restriction followed by refeeding were identified using two-way ANOVA corrected with Bonferroni. From these, genes regulated by caloric restriction and oppositely during the weight-stable refeeding phase were identified in the obese subjects. The genes that were also regulated, in the same direction as the refeeding phase, in the healthy subjects after overfeeding were defined as being regulated by caloric intake. Results were confirmed using real-time PCR or immunoassay. Results: Using a significance level of P < 0.05 for all comparisons, 52 genes were down-regulated, and 50 were up-regulated by caloric restriction and regulated in the opposite direction by refeeding and overfeeding. Among these were genes involved in lipogenesis (ACLY, ACACA, FASN, SCD), control of protein synthesis (4EBP1, 4EBP2), β-oxidation (CPT1B), and insulin resistance (PEDF, SPARC). Conclusions: Metabolic genes involved in lipogenesis, protein synthesis, and insulin resistance are central in the transcriptional response of adipocytes to changes in caloric intake.

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3