Mastoparan-Induced Insulin Secretion from Insulin-Secreting βTC3 and INS-1 Cells: Evidence for Its Regulation by Rho Subfamily of G Proteins

Author:

Amin Rajesh H.12,Chen Hai-Qing12,Veluthakal Rajakrishnan1,Silver Robert B.34,Li Jingsong5,Li GuoDong5,Kowluru Anjaneyulu12

Affiliation:

1. Departments of Pharmaceutical Sciences (R.H.A., H.-Q.C., R.V., A.K.), John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan 48201

2. Physiology, Radiology, and Biomedical Engineering, Wayne State University, and β Cell Biochemistry Research Laboratory (R.H.A., H.-Q.C., A.K.), John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan 48201

3. Pharmacology (R.B.S.), Physiology, Radiology, and Biomedical Engineering, Wayne State University, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan 48201

4. John D. Dingell Veterans Affairs Medical Center and Argonne National Laboratory (R.B.S.), National University Medical Institutes, National University of Singapore, Singapore 117597

5. Cardiovascular Research Institute (J.L., G.L.), National University Medical Institutes, National University of Singapore, Singapore 117597

Abstract

Mastoparan, a tetradecapeptide from wasp venom, stimulates insulin secretion from the islet β-cells, presumably via activation of trimeric G proteins. Herein, we used Clostridial toxins, which selectively modify and inactivate the Rho subfamily of G proteins, to examine whether mastoparan-induced insulin secretion also involves activation of these signaling proteins. Mastoparan, but not mastoparan 17 (an inactive analog of mastoparan), significantly stimulated insulin secretion from βTC3 and INS-1 cells. Preincubation of βTC3 cells with either Clostridium difficille toxin B, which inactivates Rho, Cdc42, and Rac, or Clostridium sordellii toxin, which inactivates Ras, Rap, and Rac, markedly attenuated the mastoparan-induced insulin secretion, implicating Rac in this phenomenon. Mastoparan-stimulated insulin secretion was resistant to GGTI-2147, a specific inhibitor of geranylgeranylation of Rho G proteins (e.g. Rac), suggesting that mastoparan induces direct activation of Rac via GTP/GDP exchange. This was confirmed by a pull-down assay that quantifies the binding of activated (i.e. GTP-bound) Rac to p21-activated kinase. However, glucose-induced insulin secretion from these cells was abolished by toxin B or GGTI-2147, suggesting that the geranylgeranylation step is critical for glucose-stimulated secretion. Mastoparan significantly increased the translocation of cytosolic Rac and Cdc42 to the membrane fraction. Confocal light microscopy revealed a substantial degree of colocalization of Rac (and, to a lesser degree, Cdc42) with insulin in β-cells exposed to mastoparan. Further, stable expression of a dominant negative (N17Rac) form of Rac into INS-1 cells resulted in a significant reduction in mastoparan-stimulated insulin secretion from these cells. Taken together, our findings implicate Rho G proteins, specifically Rac, in mastoparan-induced insulin release.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3