Blockade of mevalonate production by lovastatin attenuates bombesin and vasopressin potentiation of nutrient-induced insulin secretion in HIT-T15 cells. Probable involvement of small GTP-binding proteins

Author:

Li G1,Regazzi R1,Roche E1,Wollheim C B1

Affiliation:

1. Division de Biochimie Clinique, Département de Médecine, Centre Medical Universitaire, CH-1211 Geneva 4, Switzerland

Abstract

Small G-proteins (SMGs) require isoprenylation for their association with membranes. We have examined protein isoprenylation, subcellular distribution of SMGs, cytosolic Ca2+ changes and insulin secretion in HIT-T15 cells after treatment with lovastatin, which inhibits the production of isoprenoids by blocking mevalonate production by 3-hydroxy-3-methylglutaryl-CoA reductase. Numerous proteins in the 20-70 kDa range were found to be isoprenylated. Most of these proteins co-migrated with SMGs (21-27 kDa). Lovastatin treatment (25 microM, 24 h) decreased protein isoprenylation and affected the distribution of several SMGs, causing a large accumulation in the cytosol and a detectable decrease in membranes. Lovastatin selectively attenuated the potentiating action of bombesin and vasopressin, which activate phospholipase C in these cells, on insulin secretion stimulated by nutrients (glucose + leucine + glutamine). This lovastatin effect was overcome by mevalonate. Insulin secretion stimulated by nutrients alone or insulin release in the presence of the potentiating agents forskolin or phorbol myristate acetate remained unaffected. As the modulation of insulin secretion by isoprenaline and somatostatin were not altered by lovastatin, the drug does not non-selectively affect the binding of ligands to their receptors. Lovastatin did not interfere with the activation of phospholipase C by bombesin and vasopressin, since the rise in cytosolic Ca2+ induced by these agents was not changed. Limonene, proposed to block specifically prenyl-protein transferases of SMGs, did not alter protein isoprenylation patterns, but inhibited the stimulated insulin secretion. In conclusion, lovastatin selectively attenuated the potentiation of nutrient-induced insulin secretion by bombesin and vasopressin without affecting their activation of phospholipase C. The concomitant changes in SMG isoprenylation and their subcellular distribution after lovastatin treatment suggest that SMGs could play an important role in the bombesin and vasopressin action on insulin secretion.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3