Large Neurohypophysial Varicosities Amplify Action Potentials: Results from Numerical Simulations

Author:

Bennett C. Brad1,Muschol Martin1

Affiliation:

1. Department of Physics, University of South Florida, Tampa, Florida 33620

Abstract

Axons in the neurohypophysis are known for their “beads on a string” morphology, with numerous in-line secretory swellings lined up along the axon cable. A significant fraction of these secretory swellings, called Herring bodies, is large enough to serve as an identifying feature of the neural lobe in histological sections. Little is known about the physiological role such large axonal swellings might play in neuroendocrine physiology. Using numerical simulations, we have investigated whether large in-line varicosities affect the waveform and propagation of action potentials (APs) along neurohypophysial axons. Due to the strong nonlinear dependence of calcium influx on AP waveforms, such modulation would inevitably affect neuroendocrine release. The parameters for our numerical simulations were matched to established properties of voltage-gated ion channels in neurohypophysial swellings. We find that even a single in-line varicosity can severely depress AP waveforms far upstream in the axonal cable. In contrast, AP depolarization within varicosities becomes amplified. Amplification within varicosities varies in a nontrivial manner with varicosity dimensions, and is most pronounced for diameters close to those of Herring bodies. Overall, we find that large axonal varicosities significantly modulate AP waveforms and their propagation, and do so over large distances. Varicosity size is the main determinant for the observed AP amplification, with the kinetics of voltage-gated ion channels playing a noticeable but secondary role. Our results imply that large varicosities are sites of enhanced hormone release, suggesting that small and large varicosities target different neurohypophysial structures.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3