Passive current flow and morphology in the terminal arborizations of the posterior pituitary

Author:

Jackson M. B.1

Affiliation:

1. Department of Physiology, University of Wisconsin Medical School, Madison 53706.

Abstract

1. Patch-clamp techniques were used to study the morphology and electrotonic properties of the terminal arborizations of the posterior pituitary. 2. Neurobiotin-labeling experiments revealed axons and swellings connected to the structure that was patch clamped. The large swellings were en passant and situated along axons in a topological arrangement identical to that of the small varicosities. Axons had many varicosities and few branches, reflecting a predominant architectural motif of beads on a string rather than berries on a bush. 3. Cable theory was used to analyze passive current transients produced by voltage steps under whole-cell clamp. Most charging transients were not consistent with an equivalent cylinder representation as posited by the Rall model for a motoneuron. A few charging transients were consistent with the Rall model and provided estimates for basic membrane and cable properties. 4. Some of the charging transients that violated predictions of the Rall model were consistent with an alternative model, in which the patch-clamped swelling was assumed to be coupled to another swelling by a segment of axon. This model was called the Dumbbell model, and it, together with the neurobiotin-labeling experiments, indicated that a significant number of large swellings were less than one length constant away from another large swelling. 5. Large swellings can have diameters approximately 30 times larger than the diameters of the connecting axons. These swellings lie along the axon such that action potentials must propagate through them to spread excitation through the entire terminal arborization. These large swellings could be sites where action-potential propagation is more likely to fail. 6. The information presented here about neurohypophysial nerve terminals should be useful in further investigations of how terminal arborization geometry and membrane properties influence neurosecretion and synaptic transmission.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3