Functional Characterization and Structural Modeling of Obesity Associated Mutations in the Melanocortin 4 Receptor

Author:

Tan Karen1,Pogozheva Irina D.2,Yeo Giles S. H.1,Hadaschik Dirk1,Keogh Julia M.1,Haskell-Leuvano Carrie3,O'Rahilly Stephen1,Mosberg Henry I.2,Farooqi I. Sadaf1

Affiliation:

1. University of Cambridge Metabolic Research Laboratories (K.T., G.S.H.Y., D.H., J.M.K., S.O., I.S.F.), Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 2QQ, United Kingdom

2. Department of Medicinal Chemistry (I.D.P., H.I.M.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065

3. Departments of Medicinal Chemistry and Pharmacodynamics (C.H.-L.), University of Florida, Gainesville, Florida, 32610

Abstract

Mutations in the melanocortin 4 receptor (MC4R) gene are the most common known cause of monogenic human obesity. The MC4R gene was sequenced in 2000 subjects with severe early-onset obesity. We detected seven different nonsense and 19 nonsynonymous mutations in a total of 94 probands, some of which have been reported previously by others. We functionally characterized the 11 novel obesity associated missense mutations. Seven of these mutants (L54P, E61K, I69T, S136P, M161T, T162I, and I269N) showed impaired cell surface trafficking, reduced level of maximal binding of the radioligand [125I]NDP-MSH, and reduced ability to generate cAMP in response to ligand. Four mutant MC4Rs (G55V, G55D, S136F, and A303T) displayed cell surface expression and agonist binding similar to the wild-type receptor but showed impaired cAMP production, suggesting that these residues are likely to be critical for conformational rearrangement essential for receptor activation. Homology modeling of these mutants using a model of MC4R based on the crystal structure of the β2-adrenoreceptor was used to provide insights into the possible structural basis for receptor dysfunction. Transmembrane (TM) domains 1, 3, 6, 7, and peripheral helix 8 appear to participate in the agonist-induced conformational rearrangement necessary for coupling of ligand binding to signaling. We conclude that G55V, G55D, S136F, and A303T mutations are likely to strengthen helix-helix interactions between TM1 and TM2, TM3 and TM6, and TM7 and helix 8, respectively, preventing relative movement of these helices during receptor activation. The combination of functional studies and structural modeling of naturally occurring pathogenic mutations in MC4R can provide valuable information regarding the molecular mechanism of MC4R activation and its dysfunction in human disease. Among obesity-associated melanocortin-4 receptor mutations, four transmembrane domains and peripheral helix 8 are necessary for coupling of ligand binding to signaling.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3