The Heme Oxygenase System Abates Hyperglycemia in Zucker Diabetic Fatty Rats by Potentiating Insulin-Sensitizing Pathways

Author:

Ndisang Joseph Fomusi1,lane Nina1,Jadhav Ashok1

Affiliation:

1. Department of Physiology, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan, Canada S7N 5E5

Abstract

Emerging evidence indicates that aldosterone causes oxidative stress by stimulating proinflammatory/oxidative mediators, including nuclear factor-κB, activating protein (AP-1), and c-Jun N-terminal kinase. Thus, in insulin-resistant type 2 diabetes (T2D), oxidative stress generated by hyperglycemia and aldosterone would potentiate the oxidative destruction of tissue and important regulators of glucose metabolism like adiponectin and insulin. Although heme oxygenase (HO)-1 is cytoprotective, its effects on T2D have not been fully characterized. Here we report an enduring antidiabetic effect of the HO inducer, hemin, on Zucker diabetic-fatty rat (ZDF), a model of insulin-resistant T2D. Chronically applied hemin to ZDF reduced and maintained significantly low fasting and postprandial hyperglycemia for 4 months after therapy. The antidiabetic effect was accompanied by enhanced HO activity, catalase, cyclic GMP, bilirubin, ferritin, total antioxidant capacity, and insulin. In contrast, reduced aldosterone alongside markers/mediators of oxidative stress, including 8-isoprostane, c-Jun N-terminal kinase, nuclear factor-κB, AP-1, and AP-2 were observed. Interestingly, in hemin-treated ZDF, inhibitory proteins of insulin-signaling, such as glycogen synthase kinase-3 and protein-tyrosine phosphastase-1B were reduced, whereas agents that promote insulin signaling including adiponectin, cAMP, AMP-activated protein kinase, aldolase-B, and glucose transporter-4 (GLUT4), were robustly increased. Correspondingly, hemin improved ip glucose tolerance, reduced insulin intolerance, and lowered insulin resistance (homeostasis model assessment of insulin resistance), and the inability of insulin to enhance GLUT4 was overturned. These results suggest that the suppression of hyperglycemia and aldosterone-induced oxidative stress alongside the potentiation of insulin-sensitizing pathways may account for the 4-month enduring antidiabetic effect. The synergistic interaction between the HO system, aldolase-B, adiponectin, AMP-activated protein kinase, and GLUT4 may be explored for novel strategies against postprandial/fasting hyperglycemia and insulin-resistant T2D.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3