Glucotoxicity Inhibits Late Steps of Insulin Exocytosis

Author:

Dubois Mathilde,Vacher Pierre,Roger Benoı̂t,Huyghe Deborah,Vandewalle Brigitte,Kerr-Conte Julie,Pattou François,Moustaïd-Moussa Naima,Lang Jochen

Abstract

Prolonged exposure of β-cells to high glucose (glucotoxicity) diminishes insulin secretion in response to glucose and has been linked to altered generation of metabolism-secretion coupling factors. We have investigated whether glucotoxicity may also alter calcium handling and late steps in secretion such as exocytosis. Clonal INS-1E β-cells cultured at high glucose (20 or 30 mmvs. 5.5 mm) for 72 h exhibited elevated basal intracellular calcium ([Ca2+]i), which was KATP-channel dependent and due to long-term activation of protein kinase A. An increased amplitude and shortened duration of depolarization-evoked rises in [Ca2+]i were apparent. These changes were probably linked to the observed increased filling of intracellular stores and to short-term activation of protein kinase A. Insulin secretion was reduced not only by acute stimulation with either glucose or KCl but more importantly by direct calcium stimulation of permeabilized cells. These findings indicate a defect in the final steps of exocytosis. To confirm this, we measured expression levels of some 30 proteins implicated in trafficking/exocytosis of post-Golgi vesicles. Several proteins required for calcium-induced exocytosis of secretory granules were down-regulated, such as the soluble N-ethylmaleimide-sensitive factor-sensitive factor attachment receptor (SNARE) proteins VAMP-2 [vesicle (v)-SNARE, vesicle-associated membrane protein 2] and syntaxin 1 as well as complexin. VAMP-2 was also reduced in human islets. In contrast, cell immunostaining and expression levels of several fluorescent proteins suggested that other post-trans-Golgi trafficking steps and compartments are preserved and that cells were not degranulated. Thus, these studies indicate that, in addition to known metabolic changes, glucotoxicity impedes generation of signals for secretion and diminishes the efficiency of late steps in exocytosis.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3