The Glucose-6-Phosphate Transporter-Hexose-6-Phosphate Dehydrogenase-11β-Hydroxysteroid Dehydrogenase Type 1 System of the Adipose Tissue

Author:

Marcolongo Paola1,Piccirella Simona1,Senesi Silvia1,Wunderlich Livius2,Gerin Isabelle3,Mandl József42,Fulceri Rosella1,Bánhegyi Gábor142,Benedetti Angelo1

Affiliation:

1. Department of Pathophysiology, Experimental Medicine, and Public Health (P.M., S.P., S.S., R.F., G.B., A.B.), University of Siena, Siena 53100, Italy

2. Semmelweis University, and Endoplasmic Reticulum Research Group (L.W., J.M., G.B.), Hungarian Academy of Sciences, H-1088 Budapest, Hungary

3. Laboratoire de Chimie Physiologique (I.G.), Universite Catholique de Louvain, B-1200 Brussels, Belgium

4. Department of Medical Chemistry, Molecular Biology, and Pathobiochemistry (J.M., G.B.)Hungarian Academy of Sciences, H-1088 Budapest, Hungary

Abstract

11β-Hydroxysteroid dehydrogenase type 1, expressed mainly in the endoplasmic reticulum of adipocytes and hepatocytes, plays an important role in the prereceptorial activation of glucocorticoids. In liver endoplasmic reticulum-derived microsomal vesicles, nicotinamide adenine dinucleotide phosphate reduced supply to the enzyme is guaranteed by a tight functional connection with hexose-6-phosphate dehydrogenase and the glucose-6-phosphate transporter (G6PT). In adipose tissue, the proteins and their activities supporting the action of 11β-hydroxysteroid dehydrogenase type 1 have not been explored yet. Here we report the occurrence of the hexose-6-phosphate dehydrogenase in rat epididymal fat, as detected at the level of mRNA, protein, and activity. In the isolated microsomes, the activity was evident only on the permeabilization of the membrane because of the poor permeability to the cofactor nicotinamide adenine dineucleotide phosphate (NADP+), which is consistent with the intralumenal compartmentation of both the enzyme and a pool of pyridine nucleotides. In fat cells, the access of the substrate, glucose-6-phosphate to the intralumenal hexose-6-phosphate dehydrogenase appeared to be mediated by the liver-type G6PT. In fact, the G6PT expression was revealed at the level of mRNA and protein. Accordingly, the transport of glucose-6-phosphate was demonstrated in microsomal vesicles, and it was inhibited by S3483, a prototypic inhibitor of G6PT. Furthermore, isolated adipocytes produced cortisol on addition of cortisone, and the production was markedly inhibited by S3483. The results show that adipocytes are equipped with a functional G6PT-hexose-6-phosphate dehydrogenase-11β-hydroxysteroid dehydrogenase type 1 system and indicate that all three components are potential pharmacological targets for modulating local glucocorticoid activation.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3