Author:
Draper Nicole,Stewart Paul M
Abstract
Two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD1 and 11β-HSD2) catalyse the interconversion of hormonally active cortisol and inactive cortisone. The enzyme evolved from a metabolic pathway to a novel mechanism underpinning human disease with the elucidation of the role of the type 2 or ‘kidney’ isozyme and an inherited form of hypertension, ‘apparent mineralocorti-coid excess’. ‘Cushing’s disease of the kidney’ arises because of a failure of 11β-HSD2 to inactivate cortisol to cortisone resulting in cortisol-induced mineralocorticoid excess.
Conversely, 11β-HSD1 has been linked to human obesity and insulin resistance, but also to other diseases in which glucocorticoids have historically been implicated (osteoporosis, glaucoma). Here, the activation of cortisol from cortisone facilitates glucocorticoid hormone action at an autocrine level. The molecular basis for the putative human 11β-HSD1 ‘knockout’ – ‘cortisone reductase deficiency’ - has recently been described, an observation that also answers a long standing conundrum relating to the set-point of 11β-HSD1 activity. In each case, these clinical studies have been underpinned by studies in vitro and the manipulation of enzyme expression in vivo using recombinant mouse models.
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
332 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献