Insulin Resistance Accelerates Muscle Protein Degradation: Activation of the Ubiquitin-Proteasome Pathway by Defects in Muscle Cell Signaling

Author:

Wang Xiaonan1,Hu Zhaoyong2,Hu Junping1,Du Jie2,Mitch William E.2

Affiliation:

1. Renal Division (X.W., J.H.), Department of Medicine, Emory University, Atlanta, Georgia 30322

2. Nephrology Division (Z.H., J.D., W.E.M.), Baylor College of Medicine, Houston, Texas 77030

Abstract

Conditions such as acidosis, uremia, and sepsis are characterized by insulin resistance and muscle wasting, but whether the insulin resistance associated with these disorders contributes to muscle atrophy is unclear. We examined this question in db/db mice with increased blood glucose despite high levels of plasma insulin. Compared with control littermate mice, the weights of different muscles in db/db mice and the cross-sectional areas of muscles were smaller. In muscle of db/db mice, protein degradation and activities of the major proteolytic systems, caspase-3 and the proteasome, were increased. We examined signals that could activate muscle proteolysis and found low values of both phosphatidylinositol 3 kinase (PI3K) activity and phosphorylated Akt that were related to phosphorylation of serine 307 of insulin receptor substrate-1. To assess how changes in circulating insulin and glucose affect muscle protein, we treated db/db mice with rosiglitazone. Rosiglitazone improved indices of insulin resistance and abnormalities in PI3K/Akt signaling and decreased activities of caspase-3 and the proteasome in muscle leading to suppression of proteolysis. Underlying mechanisms of proteolysis include increased glucocorticoid production, decreased circulating adiponectin, and phosphorylation of the forkhead transcription factor associated with increased expression of the E3 ubiquitin-conjugating enzymes atrogin-1/MAFbx and MuRF1. These abnormalities were also corrected by rosiglitazone. Thus, insulin resistance causes muscle wasting by mechanisms that involve suppression of PI3K/Akt signaling leading to activation of caspase-3 and the ubiquitin-proteasome proteolytic pathway causing muscle protein degradation.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3