Extracellular vesicles in tumor-adipose tissue crosstalk: key drivers and therapeutic targets in cancer cachexia

Author:

Ramos Cátia C.,Pires José,Gonzalez Esperanza,Garcia-Vallicrosa Clara,Reis Celso A.,Falcon-Perez Juan M.,Freitas DanielaORCID

Abstract

Cancer cachexia is a complex metabolic syndrome characterized by unintentional loss of skeletal muscle and body fat. This syndrome is frequently associated with different types of cancer and negatively affects the prognosis and outcome of these patients. It involves a dynamic interplay between tumor cells and adipose tissue, where tumor-derived extracellular vesicles (EVs) play a crucial role in mediating intercellular communication. Tumor cells release EVs containing bioactive molecules such as hormones (adrenomedullin, PTHrP), pro-inflammatory cytokines (IL-6), and miRNAs (miR-1304-3p, miR-204-5p, miR-155, miR-425-3p, miR-146b-5p, miR-92a-3p), which can trigger lipolysis and induce the browning of white adipocytes contributing to a cancer cachexia phenotype. On the other hand, adipocyte-derived EVs can reprogram the metabolism of tumor cells by transporting fatty acids and enzymes involved in fatty acid oxidation, resulting in tumor growth and progression. These vesicles also carry leptin and key miRNAs (miR-155-5p, miR-10a-3p, miR-30a-3p, miR-32a/b, miR-21), thereby supporting tumor cell proliferation, metastasis formation, and therapy resistance. Understanding the intricate network underlying EV-mediated communication between tumor cells and adipocytes can provide critical insights into the mechanisms driving cancer cachexia. This review consolidates current knowledge on the crosstalk between tumor cells and adipose tissue mediated by EVs and offers valuable insights for future research. It also addresses controversial topics in the field and possible therapeutic approaches to manage cancer cachexia and ultimately improve patient outcomes and quality of life.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3