Author:
Kauffman Alexander S.,Bojkowska Karolina,Wills Aileen,Rissman Emilie F.
Abstract
GnRH-II is the most evolutionarily conserved member of the GnRH peptide family. In mammals, GnRH-II has been shown to regulate reproductive and feeding behaviors. In female musk shrews, GnRH-II treatment increases mating behaviors and decreases food intake. Although GnRH-II-containing neurons are known to reside in the midbrain, the neural sites of GnRH-II action are undetermined, as is the degree to which GnRH-II is regulated by energy availability. To determine whether GnRH-II function is affected by changes in food intake, we analyzed the levels of GnRH-II mRNA in the midbrain and GnRH-II protein in numerous target regions. Adult musk shrews were ad libitum fed, food restricted, or food restricted and refed for varying durations. Compared with ad libitum levels, food restriction decreased, and 90 min of refeeding reinstated, GnRH-II mRNA levels in midbrain and GnRH-II peptide in several target areas including the medial habenula and ventromedial nucleus. Refeeding for 90 min also reinstated female sexual behavior in underfed shrews. In male shrews, abundant GnRH-II peptide was present in all sites assayed, including the preoptic area, a region with only low GnRH-II in females. In contrast to females, food restriction did not affect GnRH-II protein in male brains or inhibit their mating behavior. Our results further define the relationship between GnRH-II, energy balance, and reproduction, and suggest that food restriction may inhibit female reproduction by reducing GnRH-II output to several brain nuclei. We postulate that this highly conserved neuropeptide functions similarly in other mammals, including humans, to fine-tune reproductive efforts with periods of sufficient energy resources.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献