Affiliation:
1. Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
2. United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
Abstract
Reproduction is classically controlled by gonadotropin-releasing hormone (GnRH-I) and its receptor (GnRHR-I) within the brain. In pigs, a second form (GnRH-II) and its specific receptor (GnRHR-II) are also produced, with greater abundance in peripheral vs. central reproductive tissues. The binding of GnRH-II to GnRHR-II has been implicated in the autocrine/paracrine regulation of gonadal steroidogenesis rather than gonadotropin secretion. Blood samples were collected from transgenic gilts, with the ubiquitous knockdown of GnRHR-II (GnRHR-II KD; n = 8) and littermate controls (n = 7) at the onset of estrus (follicular) and 10 days later (luteal); serum concentrations of 16 steroid hormones were quantified by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Upon euthanasia, ovarian weight (OWT), ovulation rate (OR), and the weight of each excised Corpus luteum (CLWT) were recorded; HPLC-MS/MS was performed on CL homogenates. During the luteal phase, serum progesterone concentration was reduced by 18% in GnRHR-II KD versus control gilts (p = 0.0329). Age and weight at puberty, estrous cycle length, and OWT were similar between lines (p > 0.05). Interestingly, OR was reduced (p = 0.0123), and total CLWT tended to be reduced (p = 0.0958) in GnRHR-II KD compared with control females. Luteal cells in CL sections from GnRHR-II KD gilts were hypotrophic (p < 0.0001). Therefore, GnRH-II and its receptor may help regulate OR, CL development, and progesterone production in gilts.
Funder
Agriculture and Food Research Initiative (AFRI) Competitive
USDA National Institute of Food and Agriculture (NIFA) to BRW as well as a USDA-NIFA AFRI ELI predoctoral fellowship to ATD