Platelet-Activating Factor Inhibits the Secretion of Platelet-Activating Factor Acetylhydrolase by Human Decidual Macrophages

Author:

Narahara Hisashi1,Kawano Yasushi1,Nasu Kaei1,Yoshimatsu Jun1,Johnston John M.2,Miyakawa Isao1

Affiliation:

1. Department of Obstetrics and Gynecology (H.N., Y.K., K.N., J.Y., I.M.), Oita Medical University, Hasama, Oita 879-5593, Japan;

2. Departments of Biochemistry and Obstetrics-Gynecology (J.M.J.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038

Abstract

AbstractTo clarify the role of platelet-activating factor (PAF) in parturition, the effects of PAF on the secretion of PAF-acetylhydrolase (PAF-AH), a PAF-inactivating enzyme, by decidual macrophage populations were examined. The cells were isolated from human decidual tissue by enzymatic digestion, Ficoll-Paque centrifugation, or flow cytometric sorting. The nonhydrolyzable agonist of PAF, carbamyl-PAF (C-PAF), inhibited the secretion of PAF-AH by either decidual cells or flow cytometrically purified decidual macrophages. A specific PAF receptor antagonist, WEB 2086, blocked the C-PAF-induced inhibition. Lyso-PAF, a metabolite of PAF, had no effect on the enzyme secretion. An intracellular calcium channel blocker, bis-(o-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid, tetra(acetoxymethyl)-ester, partially blocked the inhibition by C-PAF, whereas extracellular calcium channel blockers, nifedipine and verapamil, were without effect. The inhibitory effect of C-PAF was also partially blocked by protein kinase C (PKC) inhibitors, sphingosine and H-7. A PKC activator, 12-O-tetradecanoylphobol 13-acetate, decreased the secretion of PAF-AH. The decrease was abolished by the addition of sphingosine and H-7. It is suggested that PAF inhibits the PAF-AH secretion by decidual macrophages and that the inhibitory action is mediated by a signal transduction mechanism involving intracellular calcium and PKC.

Publisher

The Endocrine Society

Subject

Biochemistry, medical,Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference25 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3