11β-Hydroxysteroid Dehydrogenase Expression and Glucocorticoid Synthesis Are Directed by a Molecular Switch during Osteoblast Differentiation

Author:

Eijken M.1,Hewison M.2,Cooper M. S.2,de Jong F. H.1,Chiba H.3,Stewart P. M.2,Uitterlinden A. G.1,Pols H. A. P.1,van Leeuwen J. P. T. M.1

Affiliation:

1. Department of Internal Medicine (M.E., F.H.d.J., A.G.U., H.A.P.P., J.P.T.M.v.L.), Erasmus Medical Centre, 3000 DR Rotterdam, The Netherlands;

2. Division of Medical Science (M.H., M.S.C., P.M.S.), Institute of Biomedical Research, The University of Birmingham, Birmingham B15 2TT, United Kingdom;

3. Department of Pathology (H.C.), Sapporo Medical College, Sapporo 060-8556, Japan

Abstract

Abstract11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays an important role in the prereceptor regulation of corticosteroids by locally converting cortisone into active cortisol. To investigate the impact of this mechanism on osteoblast development, we have characterized 11β-HSD1 activity and regulation in a differentiating human osteoblast cell line (SV-HFO). Continuous treatment with the synthetic glucocorticoid dexamethasone induces differentiation of SV-HFO cells during 21 d of culture. Using this cell system, we showed an inverse relationship between 11β-HSD1 activity and osteoblast differentiation. 11β-HSD1 mRNA expression and activity were low and constant in differentiating osteoblasts. However, in the absence of differentiation (no dexamethasone), 11β-HSD1 mRNA and activity increased strongly from d 12 of culture onward, with a peak around d 19. Promoter reporter studies provided evidence that specific regions of the 11β-HSD1 gene are involved in this differentiation controlled regulation of the enzyme. Functional implication of these changes in 11β-HSD1 is shown by the induction of osteoblast differentiation in the presence of cortisone. The current study demonstrates the presence of an intrinsic differentiation-driven molecular switch that controls expression and activity of 11β-HSD1 and thereby cortisol production by human osteoblasts. This efficient mechanism by which osteoblasts generate cortisol in an autocrine fashion to ensure proper differentiation will help to understand the complex effects of cortisol on bone metabolism.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3