Artificial Intelligence Model Assisting Thyroid Nodule Diagnosis and Management: A Multicenter Diagnostic Study

Author:

Ha Eun Ju1ORCID,Lee Jeong Hoon1ORCID,Lee Da Hyun1ORCID,Moon Jayoung1ORCID,Lee Haein1ORCID,Kim You Na1ORCID,Kim Minji1ORCID,Na Dong Gyu2ORCID,Kim Ji-hoon3ORCID

Affiliation:

1. Department of Radiology, Ajou University School of Medicine , Wonchon-Dong, Yeongtong-Gu, Suwon 16499 , South Korea

2. Department of Radiology, GangNeung Asan Hospital, University of Ulsan College of Medicine , Gangneung-si, Gangwon-do 25440 , South Korea

3. Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine , Seoul 03080 , South Korea

Abstract

Abstract Context It is not clear how to integrate artificial intelligence (AI)-based models into diagnostic workflows. Objective To develop and validate a deep-learning–based AI model (AI-Thyroid) for thyroid cancer diagnosis, and to explore how this improves diagnostic performance. Methods The system was trained using 19 711 images of 6163 patients in a tertiary hospital (Ajou University Medical Center; AUMC). It was validated using 11 185 images of 4820 patients in 24 hospitals (test set 1) and 4490 images of 2367 patients in AUMC (test set 2). The clinical implications were determined by comparing the findings of six physicians with different levels of experience (group 1: 4 trainees, and group 2: 2 faculty radiologists) before and after AI-Thyroid assistance. Results The area under the receiver operating characteristic (AUROC) curve of AI-Thyroid was 0.939. The AUROC, sensitivity, and specificity were 0.922, 87.0%, and 81.5% for test set 1 and 0.938, 89.9%, and 81.6% for test set 2. The AUROCs of AI-Thyroid did not differ significantly according to the prevalence of malignancies (>15.0% vs ≤15.0%, P = .226). In the simulated scenario, AI-Thyroid assistance changed the AUROC, sensitivity, and specificity from 0.854 to 0.945, from 84.2% to 92.7%, and from 72.9% to 86.6% (all P < .001) in group 1, and from 0.914 to 0.939 (P = .022), from 78.6% to 85.5% (P = .053) and from 91.9% to 92.5% (P = .683) in group 2. The interobserver agreement improved from moderate to substantial in both groups. Conclusion AI-Thyroid can improve diagnostic performance and interobserver agreement in thyroid cancer diagnosis, especially in less-experienced physicians.

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3