Author:
Zhang Xinru,Jia Cheng,Sun Meng,Ma Zhe
Abstract
AbstractThyroid nodules are a common occurrence, and although most are non-cancerous, some can be malignant. The American College of Radiology has developed the Thyroid Imaging Reporting and Data System (TI-RADS) to standardize the interpretation and reporting of thyroid ultrasound results. Within TI-RADS, a category 4 designation signifies a thyroid nodule with an intermediate level of suspicion for malignancy. Accurate classification of these nodules is crucial for proper management, as it can potentially reduce unnecessary surgeries and improve patient outcomes. This study utilized deep learning techniques to effectively classify TI-RADS category 4 thyroid nodules as either benign or malignant. A total of 500 patients were included in the study and randomly divided into a training group (350 patients) and a test group (150 patients). The YOLOv3 model was constructed and evaluated using various metrics, achieving an 84% accuracy in the classification of TI-RADS category 4 thyroid nodules. Based on the predictions of the model, along with clinical and ultrasound data, a nomogram was developed. The performance of the nomogram was superior in both the training and testing groups. Furthermore, the calibration curve demonstrated good agreement between predicted probabilities and actual outcomes. Decision curve analysis further confirmed that the nomogram provided greater net benefits. Ultimately, the YOLOv3 model and nomogram successfully improved the accuracy of distinguishing between benign and malignant TI-RADS category 4 thyroid nodules, which is crucial for proper management and improved patient outcomes.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献