Inhibiting Soluble Epoxide Hydrolase Suppresses NF-κB p65 Signaling and Reduces CXCL10 Expression as a Potential Therapeutic Target in Hashimoto's Thyroiditis

Author:

Feng Jing123,Xu Xianghong4,Cai Wei5,Yang Xingwen6,Niu Ruilan2,Han Ziqi2,Tian Limin123ORCID

Affiliation:

1. The First School of Clinical Medicine, Lanzhou University , Lanzhou, Gansu 730099 , China

2. Department of Endocrinology, Gansu Provincial Hospital , Lanzhou, Gansu 730099 , China

3. Clinical Research Center for Metabolic Disease, Gansu Provincial Hospital , Lanzhou, Gansu 730099 , China

4. Department of Biotherapy Center, Gansu Provincial Hospital , Lanzhou, Gansu 730099 , China

5. Department of Pathology, Gansu Provincial Hospital , Lanzhou, Gansu 730099 , China

6. Department of Clinical Laboratory, Gansu Provincial Hospital , Lanzhou, Gansu 730099 , China

Abstract

Abstract Background Although Hashimoto's thyroiditis (HT) is one of most common autoimmune thyroid diseases, its treatment remains focused on symptom relief. The soluble epoxide hydrolase (sEH) shows potential functions as a drug target in alleviating some autoimmune diseases; however, we seldom know its role in HT. Methods The protein expression of sEH and related downstream molecules were evaluated by immunohistochemistry, Western blotting, ELISA, or immunofluorescence staining. RNA sequencing of tissue samples was performed to analyze differential genes and dysregulated pathways in HT and controls. The thyroid follicular epithelial cells (TFECs) and rat HT model were used to verify the biological function of sEH and the inhibition role of adamantyl-ureido-dodecanoic acid (AUDA) in HT. Results The sEH was significantly upregulated in HT patients compared with healthy individuals. Transcriptome sequencing showed cytokine-related pathways and chemokine expression; especially chemokine CXCL10 and its receptor CXCR3 were aberrant in HT patients. In TFECs and a rat HT model, blocking sEH by AUDA inhibitor could effectively inhibit the autoantibody, proinflammatory nuclear kappa factor B (NF-κB) signaling, chemokine CXCL10/CXCR3 expression, and type-1 helper CD4+ T cells. Conclusion Our findings suggest that sEH/NF-κB p65/CXCL10-CXCR3 might be promising therapeutic targets for HT.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Science and Technology Innovation Platform Foundation of Gansu Provincial Hospital

Lanzhou Science and Technology Plan

Publisher

The Endocrine Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3