Genetic Analysis, Phenotypic Spectrum and Functional Study of Rare Osteogenesis Imperfecta Caused by CRTAP Variants

Author:

Zhou Bingna1,Gao Peng2,Hu Jing1,Lin Xiaoyun1,Sun Lei1ORCID,Zhang Qian1ORCID,Jiang Yan1ORCID,Wang Ou1ORCID,Xia Weibo1,Xing Xiaoping1,Li Mei1ORCID

Affiliation:

1. Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100730 , China

2. Department of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science , Beijing 100730 , China

Abstract

Abstract Objective Deficiency of cartilage-associated protein (CRTAP) can cause extremely rare autosomal recessive osteogenesis imperfecta (OI) type VII. We investigated the pathogenic mechanisms of CRTAP variants through functional studies on bones of patients with OI. Methods Two nonconsanguineous families with CRTAP mutations were included and their phenotypes and genotypes were evaluated. Bone specimens were obtained from 1 patient with OI and a normal control during orthopedic surgery. The impacts of the novel variant on the CRTAP transcript were confirmed. The expression levels of CRTAP mRNA and CRTAP protein were analyzed. The quantification of prolyl 3-hydroxylation in the α1 chain of type I collagen was evaluated. Results Patients with OI type VII had early-onset recurrent fractures, severe osteoporosis, and bone deformities. The c.621 + 1G > A and c.1153-3C > G mutations were identified in CRTAP in the patients with OI. The c.621 + 1G > A variant was a novel mutation that could impair mRNA transcription, leading to a truncated CRTAP protein. In a patient with c.621 + 1G > A and c.1153-3C > G mutations in CRTAP, the mRNA and protein levels of CRTAP in osteoblasts were significantly decreased and the osteoid volume and osteoblast numbers were markedly reduced compared with those in the normal control individual. This was simultaneously accompanied by significantly reduced prolyl 3-hydroxylation at Pro986 in the α1 chain of type I collagen and invisible active bone formation in bone. Conclusion The novel c.621 + 1G > A mutation in CRTAP expands the genotypic spectrum of type VII OI. Biallelic mutations of c.621 + 1G > A and c.1153-3C > G in CRTAP can lead to reduced CRTAP mRNA and deficient CRTAP protein in osteoblasts, which reduces 3-hydroxylation in Pro986 of the α1 chain of type I collagen and impairs bone formation, thus contributing to severe OI type VII.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3