Prediction of Adult Height by Machine Learning Technique

Author:

Shmoish Michael1,German Alina23ORCID,Devir Nurit4,Hecht Anna4,Butler Gary5,Niklasson Aimon6,Albertsson-Wikland Kerstin7,Hochberg Ze’ev3

Affiliation:

1. Bioinformatics Knowledge Unit, The Lokey Center, Technion—Israel Institute of Technology, Haifa, Israel

2. Pediatric Endocrinology, Clalit Health Service, Haifa, Israel

3. The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel

4. Computer Science Department, Technion—Israel Institute of Technology, Haifa, Israel

5. University College London Great Ormond Street Institute of Child Health, London, UK

6. Göteborg Pediatric Growth Research Center, Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

7. Physiology/Endocrinology, Institute of Neuroscience & Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Abstract

Abstract Context Prediction of AH is frequently undertaken in the clinical setting. The commonly used methods are based on the assessment of skeletal maturation. Predictive algorithms generated by machine learning, which can already automatically drive cars and recognize spoken language, are the keys to unlocking data that can precisely inform the pediatrician for real-time decision making. Objective To use machine learning (ML) to predict adult height (AH) based on growth measurements until age 6 years. Methods Growth data from 1596 subjects (798 boys) aged 0-20 years from the longitudinal GrowUp 1974 Gothenburg cohort were utilized to train multiple ML regressors. Of these, 100 were used for model comparison, the rest was used for 5-fold cross-validation. The winning model, random forest (RF), was first validated on 684 additional subjects from the 1974 cohort. It was additionally validated using 1890 subjects from the GrowUp 1990 Gothenburg cohort and 145 subjects from the Edinburgh Longitudinal Growth Study cohort. Results RF with 51 regression trees produced the most accurate predictions. The best predicting features were sex and height at age 3.4-6.0 years. Observed and predicted AHs were 173.9 ± 8.9 cm and 173.9 ± 7.7 cm, respectively, with prediction average error of –0.4 ± 4.0 cm. Validation of prediction for 684 GrowUp 1974 children showed prediction accuracy r = 0.87 between predicted and observed AH (R2 = 0.75). When validated on the 1990 Gothenburg and Edinburgh cohorts (completely unseen by the learned RF model), the prediction accuracy was r = 0.88 in both cases (R2 = 0.77). AH in short children was overpredicted and AH in tall children was underpredicted. Prediction absolute error correlated negatively with AH (P < .0001). Conclusion We show successful, validated ML of AH using growth measurements before age 6 years. The most important features for prediction were sex, and height at age 3.4-6.0. Prediction errors result in over- or underestimates of AH for short and tall subjects, respectively. Prediction by ML can be generalized to other cohorts.

Funder

Swedish Research Council

Foundation Växthuset

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3