Growth Hormone Pulses and Liver Gene Expression Are Differentially Regulated by the Circadian Clock Gene Bmal1

Author:

Schoeller Erica L1ORCID,Tonsfeldt Karen J1ORCID,Sinkovich McKenna1,Shi Rujing1,Mellon Pamela L1ORCID

Affiliation:

1. Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California, USA

Abstract

Abstract In this study, we found that loss of the circadian clock gene Bmal1 causes disruptions throughout the growth hormone (GH) axis, from hepatic gene expression to production of urinary pheromones and pheromone-dependent behavior. First, we show that Bmal1 knockout (KO) males elicit reduced aggressive responses from wild-type (WT) males and secrete lower levels of major urinary proteins (MUPs); however, we also found that a liver-specific KO of Bmal1 (liver-Bmal1-KO) produces a similar reduction in MUP secretion without a defect in aggressive behavior, indicating that the decrease in elicited aggression arises from another factor. We then shifted our investigation to determine the cause of MUP dysregulation in Bmal1 KO animals. Because the pulse pattern of GH drives sexually dimorphic expression of hepatic genes including MUPs, we examined GH pulsatility. We found that Bmal1 KO males have a female-like pattern of GH release, whereas liver-Bmal1-KO mice are not significantly different from either WT or Bmal1 KO. Since differential patterns of GH release regulate the transcription of many sexually dimorphic genes in the liver, we then examined hepatic gene transcription in Bmal1 KO and liver-Bmal1-KO mice. We found that while some female-predominant genes increase in the Bmal1 KO, there was no decrease in male-predominant genes, and little change in the liver-Bmal1-KO. We also found disrupted serum insulin growth factor 1 (IGF-1) and liver Igf1 messenger RNA in the Bmal1 KO mice, which may underlie the disrupted GH release. Overall, our findings differentiate between GH-pulse–driven and circadian-driven effects on hepatic genes, and the functional consequences of altered GH pulsatility.

Funder

National Institutes of Health

National Centers for Translational Research in Reproduction and Infertility

Lalor Foundation

UCSD Transgenic Mouse and Embryonic Stem Cell Core Facility

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3