Targeting Glucocorticoid Metabolism in Prostate Cancer

Author:

Valle Shelley1ORCID,Sharifi Nima123ORCID

Affiliation:

1. Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA

2. Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA

3. Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA

Abstract

Abstract In the treatment of metastatic prostate cancer, resistance to hormonal therapy is a major obstacle. With antiandrogen therapies that suppress androgen signaling through the androgen receptor (AR), the primary driver of prostate cancer, some malignancies are able take advantage of the closely related glucocorticoid receptor (GR). Escape from AR dependency often involves a simple functional switch from 1 steroid receptor to another. Recent research efforts have outlined the mechanism enabling this switch, which involves alterations in glucocorticoid metabolism that occur with antiandrogen therapy to increase tumor tissue glucocorticoids and enable GR signaling. Targeting this mechanism pharmacologically by blocking hexose-6-phosphate dehydrogenase shows promise in normalizing glucocorticoid metabolism and restoring responsiveness to antiandrogen therapy. This perspective reviews what we have learned about this resistance mechanism, examines potential implications, and considers how this knowledge might be harnessed for therapeutic benefit.

Funder

National Cancer Institute

Prostate Cancer Foundation

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3