IGSF1 Deficiency Leads to Reduced TSH Production Independent of Alterations in Thyroid Hormone Action in Male Mice

Author:

Brûlé Emilie1,Silander Tanya L2,Wang Ying3,Zhou Xiang3,Bak Beata3,Groeneweg Stefan4ORCID,Bernard Daniel J123ORCID

Affiliation:

1. Department of Anatomy and Cell Biology, McGill University , Montreal H3G 1Y6 , Canada

2. Integrated Program in Neuroscience, McGill University , Montreal H3G 1Y6 , Canada

3. Department of Pharmacology and Therapeutics, McGill University , Montreal H3G 1Y6 , Canada

4. Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases , Rotterdam , The Netherlands

Abstract

Abstract Loss of function mutations in IGSF1/Igsf1 cause central hypothyroidism. Igsf1 knockout mice have reduced pituitary thyrotropin-releasing hormone receptor, Trhr, expression, perhaps contributing to the phenotype. Because thyroid hormones negatively regulate Trhr, we hypothesized that IGSF1 might affect thyroid hormone availability in pituitary thyrotropes. Consistent with this idea, IGSF1 coimmunoprecipitated with the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) in transfected cells. This association was impaired with IGSF1 bearing patient-derived mutations. Wild-type IGSF1 did not, however, alter MCT8-mediated thyroid hormone import into heterologous cells. IGSF1 and MCT8 are both expressed in the apical membrane of the choroid plexus. However, MCT8 protein levels and localization in the choroid plexus were unaltered in Igsf1 knockout mice, ruling out a necessary chaperone function for IGSF1. MCT8 expression was low in the pituitary and was similarly unaffected in Igsf1 knockouts. We next assessed whether IGSF1 affects thyroid hormone transport or action, by MCT8 or otherwise, in vivo. To this end, we treated hypothyroid wild-type and Igsf1 knockout mice with exogenous thyroid hormones. T4 and T3 inhibited TSH release and regulated pituitary and forebrain gene expression similarly in both genotypes. Interestingly, pituitary TSH beta subunit (Tshb) expression was consistently reduced in Igsf1 knockouts relative to wild-type regardless of experimental condition, whereas Trhr was more variably affected. Although IGSF1 and MCT8 can interact in heterologous cells, the physiological relevance of their association is not clear. Nevertheless, the results suggest that IGSF1 loss can impair TSH production independently of alterations in TRHR levels or thyroid hormone action.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3