Estrogen Signaling Characteristics of Atlantic Croaker G Protein-Coupled Receptor 30 (GPR30) and Evidence It Is Involved in Maintenance of Oocyte Meiotic Arrest

Author:

Pang Yefei1,Dong Jing1,Thomas Peter1

Affiliation:

1. Marine Science Institute, University of Texas at Austin, Port Aransas, Texas 78373

Abstract

Human G protein-coupled receptor 30 (GPR30) mediates estradiol-17β (E2) activation of adenylyl cyclase in breast cancer cells and displays E2 binding typical of membrane estrogen receptors (mERs). We identified a mER in Atlantic croaker ovaries with characteristics similar to those of human GPR30. To confirm the proposed role of GPR30 as a mER in this distantly related vertebrate group, we cloned GPR30 from croaker ovaries and examined its distribution, steroid binding, and signaling characteristics. Western blot analysis showed the GPR30 protein (∼40 kDa) is expressed on the plasma membranes of croaker oocytes and HEK293 cells stably transfected with GPR30 cDNA. Plasma membranes prepared from croaker GPR30-transfected cells displayed high-affinity, limited-capacity, and displaceable binding specific for estrogens, characteristic of mERs. Consistent with previous findings with human GPR30, estrogen treatment of plasma membranes from both croaker ovaries and GPR30-transfected cells caused activation of a stimulatory G protein (Gs) resulting in increased cAMP production. Treatment with E2 as well as G-1, a specific GPR30 ligand, significantly reduced both spontaneous and progestin-induced maturation of both croaker and zebrafish oocytes in vitro, suggesting a possible involvement of GPR30 in maintaining oocyte meiotic arrest in these species. Injection of antisense oligonucleotides to GPR30 into zebrafish oocytes blocked the inhibitory effects of estrogen on oocyte maturation, confirming a role for GPR30 in the control of meiotic arrest. These findings further support our previous suggestion that GPR30 is a vertebrate mER. In addition, the results suggest GRP30 may play a critical role in regulating reentry into the meiotic cell cycle in fish oocytes.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3