Pathways Leading to Phosphorylation of P450c17 and to the Posttranslational Regulation of Androgen Biosynthesis

Author:

Tee Meng Kian1,Dong Qing1,Miller Walter L.1

Affiliation:

1. Department of Pediatrics and the Metabolic Research Unit, University of California, San Francisco (UCSF), San Francisco, California 94143

Abstract

Cytochrome P450c17 (P450c17) is the single enzyme that catalyzes steroid 17α-hydroxylase and 17,20 lyase activities and hence is the crucial decision-making step that determines the class of steroid made in a steroidogenic cell. Although both activities are catalyzed on a single active site, the ratio of these activities is regulated by posttranslational events. Serine phosphorylation of P450c17 increases 17,20 lyase activity by increasing the enzyme’s affinity for its redox partner, P450 oxidoreductase. We searched for the relevant kinase(s) that phosphorylates P450c17 by microarray studies and by testing of kinase inhibitors. Microarrays show that 145 of the 278 known serine/threonine kinases are expressed in human adrenal NCI-H295A cells, only six of which were induced more than 2-fold by treatment with 8-Br-cAMP. Key components of the ERK1/2 and MAPK/ERK kinase (MEK)1/2 pathways, which have been implicated in the insulin resistance of PCOS, were not found in NCI-H295A cells, implying that these pathways do not participate in P450c17 phosphorylation. Treatment with various kinase inhibitors that probe the protein kinase A/phosphatidylinositol 3-kinase/Akt pathway and the calcium/calmodulin/MAPK kinase pathway had no effect on the ratio of 17,20 lyase activity to 17α-hydroxylase activity, appearing to eliminate these pathways as candidates leading to the phosphorylation of P450c17. Two inhibitors that target the Rho-associated, coiled-coil containing protein kinase (ROCK)/Rho pathway suppressed 17,20 lyase activity and P450c17 phosphorylation, both in NCI-H295A cells and in COS-1 cells transfected with a P450c17 expression vector. ROCK1 phosphorylated P450c17 in vitro, but that phosphorylation did not affect 17,20 lyase activity. We conclude that members of the ROCK/Rho pathway act upstream from the kinase that phosphorylates P450c17 in a fashion that augments 17,20 lyase activity, possibly acting to catalyze a priming phosphorylation.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3