Affiliation:
1. Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242
Abstract
Primary cultures of progenitor and immature rat Leydig cells were established from the testes of 21- and 35-d-old rats, respectively. The cell population remained homogeneous after 4–6 d in culture as judged by staining for 3β-hydroxysteroid dehydrogenase, but the cells were unable to bind 125I-human chorionic gonadotropin (hCG) or to respond to hCG with classical LH receptor (LHR)-mediated responses, including cAMP and inositol phosphate accumulation, steroid biosynthesis, or the phosphorylation of ERK1/2. Infection of primary cultures with recombinant adenovirus coding for β-galactosidase showed that approximately 65% of the cells are infected. Infection with adenovirus coding for the human LHR (hLHR) allowed for expression of the hLHR at a density of approximately 25,000 receptors per cell and allowed the cells to respond to hCG with increases in cAMP and inositol phosphate accumulation, steroid biosynthesis, and the phosphorylation of ERK1/2. Although progenitor and immature cells were able to respond to hCG with an increase in progesterone, only the immature cells responded with an increase in testosterone. In addition to these classical LHR-mediated responses, the primary cultures of progenitor or immature rat Leydig cells expressing the recombinant hLHR proliferated robustly when incubated with hCG, and this proliferative response was sensitive to an inhibitor of ERK1/2 phosphorylation. These studies establish a novel experimental paradigm that can be used to study the proliferative response of Leydig cells to LH/CG. We conclude that activation of the LHR-provoked Leydig cell proliferation requires activation of the ERK1/2 cascade.
Cited by
86 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献