Stable Production of a Recombinant Single-Chain Eel Follicle-Stimulating Hormone Analog in CHO DG44 Cells

Author:

Byambaragchaa Munkhzaya12,Park Sei Hyen3,Kim Sang-Gwon3,Shin Min Gyu4,Kim Shin-Kwon4,Park Myung-Hum5,Kang Myung-Hwa6,Min Kwan-Sik127ORCID

Affiliation:

1. Carbon-Neutral Resources Research Center, Hankyong National University, Anseong 17579, Republic of Korea

2. Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea

3. Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea

4. Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea

5. TNT Research, Sejong 30141, Republic of Korea

6. Department of Food Science and Nutrition, Hoseo University, Asan 31499, Republic of Korea

7. Division of Animal BioScience, School of Animal Life Convergence Sciences, Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea

Abstract

This study aimed to produce single-chain recombinant Anguillid eel follicle-stimulating hormone (rec-eel FSH) analogs with high activity in Cricetulus griseus ovary DG44 (CHO DG44) cells. We recently reported that an O-linked glycosylated carboxyl-terminal peptide (CTP) of the equine chorionic gonadotropin (eCG) β-subunit contributes to high activity and time-dependent secretion in mammalian cells. We constructed a mutant (FSH-M), in which a linker including the eCG β-subunit CTP region (amino acids 115–149) was inserted between the β-subunit and α-subunit of wild-type single-chain eel FSH (FSH-wt). Plasmids containing eel FSH-wt and eel FSH-M were transfected into CHO DG44 cells, and single cells expressing each protein were isolated from 10 and 7 clones. Secretion increased gradually during the cultivation period and peaked at 4000–5000 ng/mL on day 9. The molecular weight of eel FSH-wt was 34–40 kDa, whereas that of eel FSH-M increased substantially, with two bands at 39–46 kDa. Treatment with PNGase F to remove the N glycosylation sites decreased the molecular weight remarkably to approximately 8 kDa. The EC50 value and maximal responsiveness of eel FSH-M were approximately 1.23- and 1.06-fold higher than those of eel FSH-wt, indicating that the mutant showed slightly higher biological activity. Phosphorylated extracellular-regulated kinase (pERK1/2) activation exhibited a sharp peak at 5 min, followed by a rapid decline. These findings indicate that the new rec-eel FSH molecule with the eCG β-subunit CTP linker shows potent activity and could be produced in massive quantities using the stable CHO DG44 cell system.

Funder

National Institute of Fisheries Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3