Nitric Oxide Isoenzymes Regulate Lipopolysaccharide-Enhanced Insulin Transport across the Blood-Brain Barrier

Author:

Banks William A.1,Dohgu Shinya1,Lynch Jessica L.1,Fleegal-DeMotta Melissa A.1,Erickson Michelle A.1,Nakaoke Ryota1,Vo Than Q.1

Affiliation:

1. Division of Geriatrics, Department of Internal Medicine, Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, St. Louis, and Saint Louis University School of Medicine, St. Louis, Missouri 63106

Abstract

Insulin transported across the blood-brain barrier (BBB) has many effects within the central nervous system. Insulin transport is not static but altered by obesity and inflammation. Lipopolysaccharide (LPS), derived from the cell walls of Gram-negative bacteria, enhances insulin transport across the BBB but also releases nitric oxide (NO), which opposes LPS-enhanced insulin transport. Here we determined the role of NO synthase (NOS) in mediating the effects of LPS on insulin BBB transport. The activity of all three NOS isoenzymes was stimulated in vivo by LPS. Endothelial NOS and inducible NOS together mediated the LPS-enhanced transport of insulin, whereas neuronal NOS (nNOS) opposed LPS-enhanced insulin transport. This dual pattern of NOS action was found in most brain regions with the exception of the striatum, which did not respond to LPS, and the parietal cortex, hippocampus, and pons medulla, which did not respond to nNOS inhibition. In vitro studies of a brain endothelial cell (BEC) monolayer BBB model showed that LPS did not directly affect insulin transport, whereas NO inhibited insulin transport. This suggests that the stimulatory effect of LPS and NOS on insulin transport is mediated through cells of the neurovascular unit other than BECs. Protein and mRNA levels of the isoenzymes indicated that the effects of LPS are mainly posttranslational. In conclusion, LPS affects insulin transport across the BBB by modulating NOS isoenzyme activity. NO released by endothelial NOS and inducible NOS acts indirectly to stimulate insulin transport, whereas NO released by nNOS acts directly on BECs to inhibit insulin transport.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3