Progesterone Receptors (PR)-B and -A Regulate Transcription by Different Mechanisms: AF-3 Exerts Regulatory Control over Coactivator Binding to PR-B

Author:

Tung Lin1,Abdel-Hafiz Hany1,Shen Tianjie1,Harvell Djuana M. E.1,Nitao Lisa K.1,Richer Jennifer K.1,Sartorius Carol A.1,Takimoto Glenn S.1,Horwitz Kathryn B.1

Affiliation:

1. Division of Endocrinology, Department of Medicine, University of Colorado Health Sciences Center at Fitzsimons, Aurora, Colorado 80045

Abstract

AbstractThe two, nearly identical, isoforms of human progesterone receptors (PR), PR-B and -A, share activation functions (AF) 1 and 2, yet they possess markedly different transcriptional profiles, with PR-B being much stronger transactivators. Their differences map to a unique AF3 in the B-upstream segment (BUS), at the far N terminus of PR-B, which is missing in PR-A. Combined mutation of two LXXLL motifs plus tryptophan 140 in BUS, to yield PR-BdL140, completely destroys PR-B activity, because strong AF3 synergism with downstream AF1 and AF2 is eliminated. This synergism involves cooperative interactions among receptor multimers bound at tandem hormone response elements and is transferable to AFs of other nuclear receptors. Other PR-B functions—N-/C-terminal interactions, steroid receptor coactivator-1 coactivation, ligand-dependent down-regulation—also require an intact BUS. All three are autonomous in PR-A, and map to N-terminal regions common to both PR. This suggests that the N-terminal structure adopted by the two PR is different, and that for PR-B, this is controlled by BUS. Indeed, gene expression profiling of breast cancer cells stably expressing PR-B, PR-BdL140, or PR-A shows that mutation of AF3 destroys PR-B-dependent gene transcription without converting PR-B into PR-A. In sum, AF3 in BUS plays a critical modulatory role in PR-B, and in doing so, defines a mechanism for PR-B function that is fundamentally distinct from that of PR-A.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3