Evidence That Diet-Induced Hyperleptinemia, but Not Hypothalamic Gliosis, Causes Ghrelin Resistance in NPY/AgRP Neurons of Male Mice

Author:

Briggs Dana I.1,Lockie Sarah H.1,Benzler Jonas2,Wu Qunli13,Stark Romana1,Reichenbach Alex1,Hoy Andrew J.2,Lemus Moyra B.1,Coleman Harold A.1,Parkington Helena C.1,Tups Alex4,Andrews Zane B.1

Affiliation:

1. Department of Physiology (D.I.B., S.H.L., Q.W., R.S., A.R., M.B.L., H.A.C., H.C.P., Z.B.A.), Monash University, Clayton, Victoria 3800, Australia

2. Department of Physiology (J.B., A.J.H.), Bosch Institute, The University of Sydney, New South Wales 2006, Australia

3. Traditional Chinese Medicine Department (Q.W.), Peking Union Medical College Hospital, Beijing, China 100730

4. Department of Animal Physiology (A.T.), Faculty of Biology, Philipps University, Marburg, D-35043 Marburg, Germany

Abstract

High-fat diet (HFD) feeding causes ghrelin resistance in arcuate neuropeptide Y (NPY)/Agouti-related peptide neurons. In the current study, we investigated the time course over which this occurs and the mechanisms responsible for ghrelin resistance. After 3 weeks of HFD feeding, neither peripheral nor central ghrelin increased food intake and or activated NPY neurons as demonstrated by a lack of Fos immunoreactivity or whole-cell patch-clamp electrophysiology. Pair-feeding studies that matched HFD calorie intake with chow calorie intake show that HFD exposure does not cause ghrelin resistance independent of body weight gain. We observed increased plasma leptin in mice fed a HFD for 3 weeks and show that leptin-deficient obese ob/ob mice are still ghrelin sensitive but become ghrelin resistant when central leptin is coadministered. Moreover, ob/ob mice fed a HFD for 3 weeks remain ghrelin sensitive, and the ability of ghrelin to induce action potential firing in NPY neurons was blocked by leptin. We also examined hypothalamic gliosis in mice fed a chow diet or HFD, as well as in ob/ob mice fed a chow diet or HFD and lean controls. HFD-fed mice exhibited increased glial fibrillary acidic protein–positive cells compared with chow-fed mice, suggesting that hypothalamic gliosis may underlie ghrelin resistance. However, we also observed an increase in hypothalamic gliosis in ob/ob mice fed a HFD compared with chow-fed ob/ob and lean control mice. Because ob/ob mice fed a HFD remain ghrelin sensitive, our results suggest that hypothalamic gliosis does not underlie ghrelin resistance. Further, pair-feeding a HFD to match the calorie intake of chow-fed controls did not increase body weight gain or cause central ghrelin resistance; thus, our evidence suggests that diet-induced hyperleptinemia, rather than diet-induced hypothalamic gliosis or HFD exposure, causes ghrelin resistance.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3