Revisiting Regulators of Human β-cell Mass to Achieve β-cell–centric Approach Toward Type 2 Diabetes

Author:

Sasaki Hironobu12,Saisho Yoshifumi1ORCID,Inaishi Jun12,Itoh Hiroshi1

Affiliation:

1. Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan

2. Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan

Abstract

Abstract Type 2 diabetes (T2DM) is characterized by insulin resistance and β-cell dysfunction. Because patients with T2DM have inadequate β-cell mass (BCM) and β-cell dysfunction worsens glycemic control and makes treatment difficult, therapeutic strategies to preserve and restore BCM are needed. In rodent models, obesity increases BCM about 3-fold, but the increase in BCM in humans is limited. Besides, obesity-induced changes in BCM may show racial differences between East Asians and Caucasians. Recently, the developmental origins of health and disease hypothesis, which states that the risk of developing noncommunicable diseases including T2DM is influenced by the fetal environment, has been proposed. It is known in rodents that animals with low birthweight have reduced BCM through epigenetic modifications, making them more susceptible to diabetes in the future. Similarly, in humans, we revealed that individuals born with low birthweight have lower BCM in adulthood. Because β-cell replication is more frequently observed in the 5 years after birth, and β cells are found to be more plastic in that period, a history of childhood obesity increases BCM. BCM in patients with T2DM is reduced by 20% to 65% compared with that in individuals without T2DM. However, since BCM starts to decrease from the stage of borderline diabetes, early intervention is essential for β-cell protection. In this review, we summarize the current knowledge on regulatory factors of human BCM in health and diabetes and propose the β-cell–centric concept of diabetes to enhance a more pathophysiology-based treatment approach for T2DM.

Funder

Japan Diabetes Foundation

Keio Gijuku Academic Development Funds

Grant-in-Aid for Scientific Research

Ministry of Education, Culture, Sports, Science and Technology

Publisher

The Endocrine Society

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3