Carbohydrate-Mediated Polyethylene Glycol Conjugation of TSH Improves Its Pharmacological Properties

Author:

Park Anna1,Honey Denise M.1,Hou Lihui1,Bird Julie J.1,Zarazinski Christine1,Searles Michelle1,Braithwaite Christian1,Kingsbury Jonathan S.1,Kyazike Josephine1,Culm-Merdek Kerry1,Greene Ben1,Stefano James E.1,Qiu Huawei1,McPherson John M.1,Pan Clark Q.1

Affiliation:

1. Genzyme Corporation, a Sanofi Company, Framingham, Massachusetts 01701

Abstract

AbstractThyrogen (thyrotropin alfa for injection), recombinant human TSH (rhTSH), has been successfully used to enhance diagnostic radioiodine scanning and thyroglobulin testing in the follow-up of patients with thyroid cancer and as an adjunctive treatment for radioiodine thyroid remnant ablation. However, the short half-life of rhTSH in the circulation requires a multidose regimen. We developed novel sialic acid-mediated and galactose-mediated conjugation chemistries for targeting polyethylene glycol (PEG) to the three N-linked glycosylation sites on the protein, to prolong plasma half-life by eliminating kidney filtration and potential carbohydrate-mediated clearance. Conjugates of different PEG sizes and copy numbers were screened for reaction yield, TSH receptor binding, and murine phamacokinetics/pharmacodynamics studies. The best performing of these products, a 40-kDa mono-PEGylated sialic acid-mediated conjugate, exhibited a 3.5-fold longer duration of action than rhTSH in rats, as a 5-fold lower affinity was more than compensated by a 23-fold extension of circulation half-life. Biochemical characterization confirmed conjugation through the sialic acids. Correlation of PEG distribution on the three N-linked glycosylation sites and the PEG effect on receptor binding supported the previously reported structure-function relationship of rhTSH glycosylation. This long-acting rhTSH has the potential to significantly improve patient convenience and provider flexibility while reducing potential side effects associated with a sudden elevation of serum TSH.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3