Adult-Onset Growth Hormone and Insulin-Like Growth Factor I Deficiency Reduces Neoplastic Disease, Modifies Age-Related Pathology, and Increases Life Span

Author:

Sonntag William E.,Carter Christy S.,Ikeno Yuji,Ekenstedt Kari,Carlson Cathy S.,Loeser Richard F.,Chakrabarty Shilla,Lee Shuko,Bennett Colleen,Ingram Rhonda,Moore Tracy,Ramsey Melinda

Abstract

Abstract Disruption of the insulin/IGF-I pathway increases life span in invertebrates. However, effects of decreased IGF-I signaling in mammalian models remain controversial. Using a rodent model with a specific and limited deficiency of GH and IGF-I, we report that GH and IGF-I deficiency throughout life [GH deficiency (GHD)] has no effect on life span compared with normal, heterozygous animals. However, treatment of GHD animals with GH from 4–14 wk of age [adult-onset (AO) GHD] increased median and maximal life span by 14% and 12%, respectively. Analysis of end-of-life pathology indicated that deficiency of these hormones decreased tumor incidence in GHD and AO-GHD animals (18 and 30%, respectively) compared with heterozygous animals and decreased the severity of, and eliminated deaths from, chronic nephropathy. Total disease burden was reduced by 24% in GHD and 16% in AO-GHD animals. Interestingly, the incidence of intracranial hemorrhage increased by 154 and 198% in GHD and AO-GHD animals, respectively, compared with heterozygous animals. Deaths from intracranial hemorrhage in AO-GHD animals were delayed by 14 wk accounting for the increased life span compared with GHD animals. The presence of GH and IGF-I was necessary to maximize reproductive fitness and growth of offspring early in life and to maintain cognitive function and prevent cartilage degeneration later in life. The diverse effects of GH and IGF-I are consistent with a model of antagonistic pleiotropy and suggest that, in response to a deficiency of these hormones, increased life span is derived at the risk of functional impairments and tissue degeneration.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3