Differential Increase in Forebrain and Caudal Neurosecretory System Corticotropin-Releasing Factor and Urotensin I Gene Expression Associated with Seawater Transfer in Rainbow Trout

Author:

Craig Paul M.1,Al-Timimi Haider1,Bernier Nicholas J.1

Affiliation:

1. Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

AbstractTransfer to seawater (SW) in rainbow trout elicits an increase in plasma cortisol and a bout of anorexia. Although the corticotropin-releasing factor (CRF) system has known hypophysiotropic and anorexigenic properties, it is not known whether CRF-related peptides originating from either the forebrain or the caudal neurosecretory system (CNSS) play a role during SW acclimation. Therefore, we examined the effects of SW transfer on food intake, plasma osmolality, hypothalamic-pituitary-interrenal axis activity, and the expression of CRF and urotensin I (UI) in the forebrain and the CNSS. While SW transfer chronically suppressed food intake over a 2-wk period, it transiently increased plasma osmolality, ACTH, and cortisol. Similarly, 24 h after SW transfer, hypothalamic and preoptic area CRF mRNA levels were significantly increased but recovered to pretransfer levels within 7 d. Conversely, SW transfer elicited a delayed increase in hypothalamic UI mRNA levels and had no effect on preoptic area UI expression. In the CNSS, SW exposure was associated with parallel increases in CRF and UI mRNA levels from 24 h post transfer through 7 d. Finally, in situ hybridization demonstrated an extensive and overlapping pattern of CNSS CRF and UI expression. These results differentially implicate specific neuronal populations of the CRF system in the acute and chronic responses to a hyperosmotic stress and suggest that forebrain and CNSS CRF-related peptides have different roles in the coordinated response to fluid balance disturbances.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference56 articles.

1. Endocrine control of osmoregulation in teleost fish.;McCormick;Am Zool,2001

2. The natriuretic peptide system in eels: a key endocrine system for euryhalinity;Takei;Am J Physiol,2002

3. Effects of salinity on food intake, absorption and conversion in the rainbow trout (Salmo gairdneri Richardson).;MacLeod;Mar Biol,1977

4. The effects of salinity on growth of rainbow trout.;McKay;Aquaculture,1985

5. Effects of transfer to seawater on growth and feeding in Atlantic salmon smolts (Salmo salar L.).;Usher;Aquaculture,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3