Glucocorticoids Regulate Plasma Membrane Potential During Rat Thymocyte Apoptosis in Vivo and in Vitro

Author:

Mann Cynthia L.1,Cidlowski John A.1

Affiliation:

1. Molecular Endocrinology Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599

Abstract

Abstract Glucocorticoids induce a series of profound biochemical changes in thymocytes that initiate apoptosis; however, the pathways beyond receptor transactivation that lead to this form of cell death are not fully understood. In this study, we report a novel site of action for glucocorticoids at the site of the plasma membrane. Specifically, we find that glucocorticoids induce the loss of plasma membrane potential both in vivo and in vitro. The glucocorticoid-induced loss of plasma membrane potential in cultured primary isolated rat thymocytes was both dose and time dependent. Other steroid hormones, including progesterone, estrogen, and testosterone, fail to alter the depolarization state of the thymocyte plasma membrane. Interestingly, other nonsteroid stimuli that also activate apoptosis in thymocytes also lead to cellular depolarization. In contrast, HeLa cells, which contain functional glucocorticoid receptors but do not die in response to hormone, do not alter their plasma membrane potential in response to glucocorticoids, indicating a strong association between depolarization and apoptosis. Furthermore, the ability of glucocorticoids to depolarize the plasma membrane of thymocytes required the interaction of glucocorticoids with their cognate receptor, because RU486 failed to depolarize thymocytes and antagonized the effect of glucocorticoids. Finally, experiments using inhibitors of transcription and translation indicated that the loss of plasma membrane potential in thymocytes following glucocorticoid treatment required de novo gene expression. The results of these studies establish that the loss of plasma membrane potential is an early important feature of glucocorticoid-induced apoptosis of thymocytes.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3