A Transcriptionally Active Human Type II Gonadotropin-Releasing Hormone Receptor Gene Homolog Overlaps Two Genes in the Antisense Orientation on Chromosome 1q.12

Author:

Morgan Kevin1,Conklin Darrell2,Pawson Adam J.1,Sellar Robin1,Ott Thomas R.1,Millar Robert P.3

Affiliation:

1. Medical Research Council Human Reproductive Sciences Unit (K.M., A.J.P., R.S., T.R.O., R.P.M.), University of Edinburgh Academic Centre, Edinburgh EH16 4SB, United Kingdom;

2. ZymoGenetics Inc. (D.C.), Seattle, Washington 98102;

3. Medical Research Council Molecular Reproductive Endocrinology Unit (R.P.M.), University of Cape Town Medical School, Observatory 7925, Cape Town, South Africa

Abstract

GnRH-II peptide hormone exhibits complete sequence conservation across vertebrate species, including man. Type-II GnRH receptor genes have been characterized recently in nonhuman primates, but the human receptor gene homolog contains a frameshift, a premature stop codon (UGA), and a 3′ overlap of the RBM8A gene on chromosome 1q.12. A retrotransposed pseudogene, RBM8B, retains partial receptor sequence. In this study, bioinformatics show that the human receptor gene promoter overlaps the peroxisomal protein11-β gene promoter and the premature UGA is positionally conserved in chimpanzee. A CGA [arginine (Arg)] occurs in porcine DNA, but UGA is shifted one codon to the 5′ direction in bovine DNA, suggesting independent evolution of premature stop codons. In contrast to marmoset tissue RNA, exon- and strand-specific probes are required to distinguish differently spliced human receptor gene transcripts in cell lines (HP75, IMR-32). RBM8B is not transcribed. Sequencing of cDNAs for spliced receptor mRNAs showed no evidence for alteration of the premature UGA by RNA editing, but alternative splicing circumvents the frameshift to encode a two-membrane-domain protein before this UGA. A stem-loop motif resembling a selenocysteine insertion sequence and a potential alternative translation initiation site might enable expression of further proteins involved in interactions within the GnRH system.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3